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Summary. Generating a full hexahedral mesh for any 3D geometric domain is still
a challenging problem. Among the different attempts, the octree-based methods are
the most efficient from an engineering point of view. But the main drawback of
such methods is the lack of control near the boundary. In this work, we propose
an a posteriori technique based on the notion of the fundamental mesh in order
to improve the mesh quality near the boundary. This approach is based on the
resolution of a constraint problem defined on the topology of the CAD model that
we have to discretize.

Key words: hexahedral mesh modification, topology of CAD models, fundamental
sheets, sheet insertion, constraint-based system

1 Introduction

Computational simulations depend upon the numerical approximation method
used, such as finite element methods or finite volume methods. Such methods
rely on a discretization of the physical domain into a “mesh”. Depending on
the numerical approximation methods, hexahedral meshes are preferred to
tetrahedral meshes due to their layered structure that can be aligned along
the boundary of the 3D geometric domain to be meshed. While this structure
is an important feature of hexahedral meshes [13], it is also the origin of the
issues in writing generic and robust meshing algorithms.

The automatic generation of hexahedral meshes for any geometric 3D ob-
ject is still an open problem. In recent decades, different approaches have
been followed to generate a full hexahedral mesh for any geometric 3D object.
Starting from a pre-meshed boundary surface, pure geometric approaches like
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plastering [2] or H-morph [15] algorithms have been proposed, while some
other works have been based on pure topological approaches [20, 3, 8]. In
both cases, the success was limited: some unfilled cavities remain or inverted
cells and negative Jacobian cells can be generated inside the mesh. By re-
laxing the constraint of working with a pre-meshed boundary, inside-out al-
gorithms [9, 18] or unconstrained plastering [19] have provided encouraging
examples of all-hex meshes for arbitrary geometries. For instance, inside-out
algorithms do not consider the global topological structure and generally put
the worst quality elements near the boundaries while the quality of elements
in these areas can be very important for numerical approximation methods.

Among the different families of hexahedral meshing algorithms, inside-out
or octree-based algorithms [9] are certainly the most efficient from an engi-
neering point of view. Quite generic and “simple” to implement, they offer
an automatic method to get a hexahedral mesh for any 3D geometric do-
main, however, the mesh quality and structure is very good inside the domain
and quite poor near the boundary. In order to improve the quality near the
boundary and especially for sharp features, recent works about inside-out al-
gorithms suggest performing a post-processing stage where some sheets are
inserted along the boundary to get better shaped hexahedra [18], or local
transformation patterns are applied [9]. In this paper, we focus on this post-
processing stage where some sheets are inserted inside the mesh to improve
the mesh structure along the boundary. To do that our approach is based
on the notion of the fundamental mesh which is a theoretical classification of
the layers or sheets required to capture the model’s geometric topology [6, 5].
This classification allows us to link geometric features and global topological
constraints in a unique concept known as fundamental sheets, or fun sheets
for short. It is also particularly appropriate for CAD models where numerous
sharp features (corners and ridges) are present. The process of inside-out or
octree-based algorithms preserving sharp features of a CAD model[14, 9, 16]
can be split into two main steps:

1. considering a geometric domain Ω and an initial hexahedral mesh M , the
cells of M that are inside ∂Ω (totally or partially depending on the algo-
rithm) are kept3. The boundary nodes, edges and faces are then classified
onto ∂Ω to fullfill Ω.

2. Some topological operations on M are performed in order to improve the
quality of the hexahedral elements near ∂Ω.

For this type of algorithms, the robustness of the first step remains to be
proved, while the second step is done applying heuristics based on geometric
criteria. In this work, we suggest a new way for this second step: our method
consists in solving an integer constraint-based system to define fundamental
sheets to insert and then to insert those into M .

3Some mesh refinement processes can be performed to capture small geometric
features.
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In this paper, and mainly in Section 3, we focus on the resolution of the
constraint-based system. The formulation of the problem we give allows us to
ensure an automatic, reliable and terminating process. We also explain how
we define the sheets to insert in Section 3. In Section 4, some examples are
given before concluding. But in order to present this work some basic mesh
structure definitions and the notions of fundamental sheets and fundamental
mesh are mandatory. They are given in Section 2.

2 Background and Theoretical Mesh Foundations

Unlike tetrahedral meshes, hexahedral meshes have an inherent layered struc-
ture, which makes both local modification [1, 4, 7] and automatic generation of
all-hexahedral meshes difficult. This structure is formally defined as the dual,
or the Spatial Twist Continuum [11]. It is the main cause of robustness issues
with previous attempts at all-hexahedral meshing which rely on a pre-meshed
boundary4. As a consequence, the development of a reliable all-hexahedral
meshing algorithm for arbitrary geometries can not be done without taking
this structure into account. But it must also be “connected” to the geometric
features of the geometric domain that is to be meshed. In order to formalize
this connection, the notion of the fundamental mesh was introduced in [6, 5].
The work of this paper relies on this notion that we review in this section.

2.1 Topological Definitions

A hexahedral mesh is composed of sets of hexahedra, quadrilaterals, edges
and nodes, that are connected to form a strong topological structure. The
dual of this structure can be modeled as a simple arrangement of surfaces[21]
where:

• each surface corresponds to a layer of hexahedra, or primal sheets,
• the intersection of two surfaces is a column of hexahedra, or a primal5

chord,
• the intersection of three surfaces is a single hexahedron.

Note that self-intersecting sheets are of course possible. To illustrate these
notions, let us consider Fig. 1-a, where two primal sheets intersect each other.
Their intersection forms a primal chord, which is is exhibited on Fig. 1-b.

4Under the acceptable conditions of having a volume isomorphic to a ball and
an even number of quadrilaterals on the boundary.

5The term primal is used in opposition to the term dual, sheets and chords being
originally terms used in the dual of hexahedral meshes.
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a b

Fig. 1. In a, two primal sheets (respectively in red and blue) intersect each other
along a chord (in green) that is shown alone in b

2.2 Mesh classification onto geometric models

Meshes are used to discretize a geometric domain Ω. The notion of “discretiza-
tion” requires that any geometric point in Ω belongs to only one mesh cell
and the mesh wholly fills Ω. But in order to perform FEM analysis onto CAD
models it is necessary to distinguish the nodes, edges and faces that are on
∂Ω. To do that, we need to handle mesh surfaces and mesh lines. Let M be
a mesh discretizing a bounded domain Ω, a mesh surface of M is a set of
pairwise adjacent faces forming a 2-manifold, and a mesh line of M is a set of
pairwise adjacent edges forming a 1-manifold.

In order to represent the 3D bounded domains we want to discretize, a
boundary representation is mostly used. A 3-dimensional geometric object is
then a 3-tuple (S,C,V) where

1. S is a non-empty set of geometric surfaces enclosing a 3-dimensional space
and such that ∀(s1, s2) ∈ S2, s1 ∩ s2 = ∅;

2. C is the non-empty set of curves adjacent to one or more surfaces in S;
3. V is the non-empty set of vertices adjacent to one or more surfaces in S.

We can now associate geometric surfaces and geometric curves respectively to
mesh surfaces and mesh lines. This association is an extension of the classifi-
cation notion introduced in [17].

Definition 1 (Geometric association). Let M be a hexahedral mesh dis-
cretizing the BRep geometric object G = (S,C, V ).

• A mesh surface sM is associated to a geometric surface s ∈ S iff all the
faces in sM , all the edges and nodes adjacent to a face of sM are geomet-
rically on surface s within a tolerance, and sM discretizes surface s (i.e.
every point x ∈ s is contained in exactly one face, f ∈ sM , and sM wholly
fills s).

• A mesh line lM is associated to a geometric curve c ∈ C iff all the edges in
lM and all the nodes adjacent to an edge of lM are geometrically on curve
c within a tolerance, and lM discretizes curve c (i.e. every point x ∈ c is
contained in exactly one edge, e ∈ lM , and lM wholly fills c).
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Implicitly, this definition indicates that if two geometric surfaces s1 and s2

of a BRep geometric object share a curve c, then the edges of the mesh line
associated to curve c are both associated to surfaces s1 and s2 too.

2.3 Fundamental Hexahedral Meshes

Fundamental meshes characterize what it means for a mesh to have well-
shaped hexahedra near the boundary.

Definition 2 (Fundamental primal chord). Let M be a hexahedral mesh
of a 3D geometric object G = (S,C, V ), let cG ∈ C be a geometric curve of G
and (sG1

, sG2
) ∈ S2 be the adjacent surfaces of cG. Let FG1

and FG2
be the

sets of faces adjacent to cG and belonging to sG1
and sG2

respectively, let Hc be
the set of all the hexahedra sharing a face of FG1

(respectively FG2
), a primal

chord c is a fundamental primal chord of cG associated to sG1
(respectively

sG2
) iff Hc is included into c and c is simply connected locally to curve cG.

This definition ensures that if you consider a geometric curve cG delimiting two
geometric surfaces, then, on both surfaces, quadrilaterals adjacent to curve cG

belong to a single primal chord (see Fig. 2). This definition specifies nothing
about the hexahedra having an edge associated to curve cG but no faces on
the geometric boundary. Indeed, any number of chords can be fundamental to
the same geometric curve. In order to define the notion of fundamental sheets,
we now introduce the definition of geometric surfaces capture.

a b

Fig. 2. Two examples of fundamental chords

Definition 3 (Primal sheet capturing a geometric surface). Let M be
a hexahedral mesh of a 3D geometric object G = (S,C, V ), let sG ∈ S be a
geometric surface of G and sM be the quadrilateral surface mesh associated to
sG, let Hs be the set of all the hexahedra incident to a face of sM , a primal
sheet P is a sheet capturing sG iff

1. Hs ⊆ P and,
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2. P is simply connected locally to surface sG.

The first condition ensures that the geometric surface is captured by a single
primal sheet. For instance, let us consider Fig. 3-a, all the hexahedra belonging
to the green primal sheet are along a single curved surface. On the contrary, in
Fig. 3-b, this surface is partially captured by three primal sheets. The second
condition guarantees that the corresponding dual sheet is locally a 2-manifold.

a b

Fig. 3. The same geometric 3D domain where a curved surface is captured by a
single fundamental sheet in a and three non-fundamental sheets in b

Using Definitions 2 and 3, we will distinguish three types of fundamental
sheets.

Definition 4 (fundamental sheets). Let M be a hexahedral mesh of a ge-
ometric object G = (S,C, V ), sG ∈ S be a geometric surface of G, sM be
the quadrilateral surface mesh corresponding to sG, Hs be the set of all the
hexahedra sharing a face of sM and cG ∈ G be a geometric curve of G. Then
a primal sheet P is a:

• level 1 fundamental sheet for sG iff P captures sG and every hexahedron
h ∈ P − Hs participates to capture another geometric surface of G;

• level 2 fundamental sheet for sG iff P captures sG and P is not a level
1 fundamental sheet;

• level 3 fundamental sheet for cG iff
– There exists a fundamental chord c and a level 1 or level 2 fundamental

sheet P2 such that c is the intersection of P and P2,
– P is neither a level 1 nor a level 2 fundamental sheet.

Fig. 4 shows examples of fundamental sheets. In Fig. 4-a, the hexahedral
mesh is given. In Fig. 4-b, a level 1 fundamental sheet captures the cylindrical
surface of the geometric model. In Fig. 4-c, two level 2 fundamental sheets
participate to capture geometric surfaces before diving into the mesh volume.
In Fig. 4-d, four level 3 fundamental sheets are shown. They participate, by
pair of one red sheet and one blue sheet, in capturing geometric curves. Fig. 5
provides the dual representation corresponding to the fundamental primal
sheets of Fig. 4.
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a b c d

Fig. 4. A hexahedral mesh (in a) and one level 1 fundamental sheet (in b), two
level 2 fundamental sheets (in c) and four level 3 fundamental sheets (in d)

a b c

Fig. 5. Dual representation of the fundamental sheets given in Fig. 4

Considering the three levels of fundamental sheets defined previously, a
mesh of a 3D geometric object G = (S,C, V ) is a fundamental mesh of G iff

1. All the geometric surfaces in S are captured by a level 1 or level 2 funda-
mental sheet in M ;

2. All the geometric curves in S are captured by level 3 fun sheets in M .

3 A constraint-based system to get fundamental meshes

Considering a hexahedral mesh M discretizing a geometric model G =
(S,C, V ), our aim is to transform M into a fundamental mesh of G. The
definition of fundamental meshes being based on the existence of fundamen-
tal sheets, the mesh transformation is performed by sheet insertions [10]. In
order to determinate which sheets to insert, we consider the geometric curves
and their incidence relationships to geometric vertices and we solve a con-
straint system to label every geometric curve. The label associated to a curve
c indicates a configuration of several fundamental sheets that participate to
locally capture c. Once a label is associated to each curve, we automatically
deduce the sets of level 1, level 2 and level 3 fundamental sheets to insert.
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3.1 Curve labeling

In this part, we consider the geometric vertices and geometric curves as defin-
ing a weighted graph G = (V G, EG), where V G = {v1, v2, . . . , vn} is a set of
vertices and EG = {e1, e2, . . . , en} is a set of edges. A weight is then associ-
ated to each graph edge and will correspond to the labeling of the curves. In
this way, solving our problem consists in solving a problem of graph theory.

Curve labeling definition

Depending on the number of fundamental chords that capture a geometric
curve, we assign a number to every geometric curve of the geometric model.
This number can take any strictly positive value, but for geometric meaning
it should range from 1 to 4. Fig 6 depicts the four cases we handle focusing on
the dual representation of the fundamental sheets. We consider that a curve
c can be locally captured by:

1. two level 1 fundamental sheets (see Fig. 6-a),
2. one level 1 fundamental sheet and two level 3 fundamental sheets (see

Fig. 6-b),
3. two level 2 fundamental sheets that intersect each others and two level 3

fundamental sheets (see Fig. 6-c),
4. two level 2 fundamental sheets that do not intersect each other and two

level 3 fundamental sheets (see Fig. 6-d).

The “locality” term is due to the fact that locally to a curve, it is impos-
sible to distinguish a level 1 from a level 2 fundamental sheet and a level 3
from a level 2 fundamental sheet. Moreover a propagation of constraints along
geometric curves and surfaces can alter this classification.

a b c d

Fig. 6. The four types of curves we handle

Ideally, each geometric curve should be captured by one, two, three or
four chords depending on the dihedral angle between its incident geometric
surfaces. Considering a dihedral angle α ∈ [0, 2π], the curve should be la-
beled 1 if α < 3π/4, 2 if 3π/4 ≤ α < 3π/2, 3 if 3π/2 ≤ α < 7π/4 and 4 if
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Fig. 7. Propagation of geometric vertices’ constraints along geometric curves

7π/4 ≤ α < 2π.
However, locally to a vertex some curves’ labeling are invalid due to the topo-
logical structure of hexahedral meshes. As a consequence we currently handle
a limited number of configurations for 3, 4 and 5-valent vertices. Those config-
urations are shown in Table 1; for each configuration is mentioned the number
of fundamental sheets inserted and the number of hexahedra that capture the
geometric vertex. The labeling configurations allowed are local to each vertex,
and conflicts can spawn across the geometric model. It is important to un-
derstand that the configurations given in Table 1 are those we generate with
our approach starting from any hexahedral mesh. Our algorithm can thus be
applied to modify any hexahedral mesh.
Hence, labeling the curves of a geometric model G is a global problem. For
instance, consider the example of Fig. 7 where are represented four dual fun-
damental sheets for a square-based pyramid. Since each base corner of this
pyramid is a 3-valent geometric vertex with angles between curves lower or
equal than π/2, ideally, it will be meshed with a single hexahedron. It means
curves C1, C2 and C3 would have label 1. However, the top vertex of the
pyramid is 4-valent, which requires that at least two of the curves connected
to the pyramid’s top vertex must have label 2. As a result, the initial label of
C1 becomes 2 during the solving of the constraint system. It means that the
B vertex that ideally would have been captured by three level 1 fundamental
sheets (putting one hexahedron at the corner) will instead be captured by
one level 1 fundamental sheet, and two level 3 fundamental sheets that will
capture curve C1, effectively putting two hexahedra at the corner.

Mathematical formulation of the problem

Considering a geometric model G = (S,C, V ), assigning a number to each
curve of C can be interpreted as solving the following minimization problem:

F = min

|C|∑

i=1

λwi
g−wi

c
(1)
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V

V V

V

Fig. 8. The labeling of vertex V is increased (left) or decreased by 2 (right)

where for all i in [1, |C|],

• wi
c is the decision variable corresponding to the computed label we will

assign to the ith curve,
• wi

g is the ideal geometric label we would assign to the ith curve without
considering the other geometric curves incident to common vertices, and

• λwi
g−wi

c
is a cost term designed to favor good geometric configurations and

discard invalid ones.

This formulation deserves some explanations. The label wi
c is associated to the

ith curve and is chosen so as to comply with allowed labeling configurations
at each vertex without any conflicts and should be “close” to the ideal wi

g;
the closeness is defined by the cost term λwi

g−wi
c
. Depending on the sign of

wi
g − wi

c, we may not accept the resulting mesh. For instance, let us consider
the 2D case of Fig. 8:

• In a, the ideal labeling for vertex V is 1. If we assign a weight of 3 (a
difference of 2), we get 3 quadrilaterals that capture V . The obtained
mesh is not the best one but it remains valid.

• In b, the ideal labeling for vertex V is 3 and we compute a weight of 1
(also a difference of 2), we get just one quadrilateral capturing V . This
unique quadrilateral is inverted and thus inappropriate for finite element
methods.

We arbitrarily choose λ0 = 0, λ−1 = 1, λ−2 = 2, λ−3 = 3, λ1 = 1, λ2 = 103

and λ3 = 106. The two latter values are set in order to heavily penalize (and
thus avoid when possible) some labeling geometric configurations, namely the
case when the number of chords capturing a curve is reduced compared to the
ideal labeling. This cost term can be set freely and should reflect the behavior
that the user wants and allows.

System solving

Considering a given geometric model G and a hexahedral mesh discretizing it,
we have to solve Problem 1. First we initialize the ideal geometric label wi

g for
every geometric curve. Let c be such a curve, this is achieved by computing the
dihedral angle along all the mesh edges discretizing c and keeping the maximal
one for each curve. Once this initialization is performed, our solution relies on
building a research tree where:
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Edge Configuration Level Hex. Edge Configuration Level Hex.
numb. Configuration 1 2 3 Hex. numb. Configuration 1 2 3 Hex.

1-1-1 1

1

1

3 0 0 1 1-1-2 2

1

1

2 0 2 2

1-1-3
3

1

1

0 2 2 3 2-2-2 2

2

2

1 0 3 3

2-3-3

3

2

3 0 2 2 2 3-3-3

3

3

3 0 3 3 7

1-2-1-2

2

1

1

2

2 0 2 2 2-2-2-2

2

2

2

2

1 0 4 4

2-3-2-3

2

3

3

2

0 2 4 6 2-2-2-2-2

2

22

2

2

1 0 5 5

2-2-3-2-3

2

23

2

3

0 2 5 7

Table 1. Validity rules for 3, 4 and 5-valent geometric vertices

• Each node n of the tree contains an array of weights associated to the
curves and an array of booleans describing whether the weight on the
corresponding curve has already been constrained or remains free to be
modified;

• The weight array at the root node contains the ideal weights wi
g for all

i in [1, |C|], and no curve is constrained. As a consequence the objective
function F reaches its minimum, i.e. zero, for the root.

• An internal node at depth k, i.e. neither the root nor a leaf, corresponds to
a state where assigned labeling to curves incident to vertices up to the kth

one comply with a local configuration at each vertex and has no conflict
with previously constrained curves.

• A leaf corresponds to a valid configuration.

In order to create such a research tree, and thus solve Problem (1), we
use a depth-first algorithm where the creation of nodes is as follows. Let n be
a node of depth k. That means that the current curves’ labeling is valid for
nodes V1 to Vk and that a value vmin corresponding to the minimum value
computed for F exists. Value vmin is equal to the cost term λwi

g−wi
c

of a
valid configuration if a first complete branch to a leaf has been computed, or
infinity otherwise. Let C1, C2, . . . , Cm be the configurations allowed for vertex
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Vk+1, then n might have a child for each configuration Ci, 1 ≤ i ≤ n, with
any curve connected to Vk+1 receiving weights as specified by Ci. In practice,
some configurations do not lead to the creation of a child node:

• no child is created when Ci imposes a different weight on an already con-
strained curve;

• if applying Ci leads to a computed value of F greater than vmin, the
corresponding child node is not created. It is a simple way to reduce the
number of configurations to evaluate, and it allows us to keep the best
solution in the meaning of F . This optimization relies on Lemma (1).

Lemma 1. Considering a research tree as defined previously, the value of F
for a node is lower or equal than the value of F for any of its children.

Proof. Let us consider a node nj of depth k + 1 such that its father is the
node ni. As a child node of ni, the labeling of the edges incident to vertex
Vk+1 in nj is either the same as in ni, or it can be different depending on the
validity rule that spawned nj . In the first case we have F (nj) = F (ni) and in
the second case where Eij is the set of curves that have been renumbered by
wl

c with l in [1, |Eij |] when going from ni to nj we have

F (nj) = F (ni) +

|Eij |∑

l=1

λwl
g−wl

c

Since the cost term λ is always positive, we have F (nj) ≥ F (ni). ⊓⊔

Lemma 2. The proposed algorithm always returns a valid labeling.

Proof. A solution can always be computed by assigning all the curves’ labeling
to 2. Table 1 shows that indeed, for 3, 4 or 5-valence vertices such a solution
is valid. This solution consists in inserting a unique level 1 fundamental sheet
that encloses all the existing hexahedral cells and captures all the geometric
surfaces and several level 3 fundamental sheets to capture curves. ⊓⊔

In order to illustrate this algorithm, let us consider Fig. 9 where a small
portion of the research tree is shown. At the root node, the objective function
F returns zero since wj

g = wj
c for any geometric curve j. We work vertex by

vertex; starting from the 4-valent vertex A at the top of the pyramid, we build
5 children (only 4 are represented), each one corresponding to a configuration
allowed in Table 1 (while there are only three possible rules appearing in
the table, rotation is allowed). We then follow the first branch and choose a
configuration for B by first exploring the 1-2-1-2 rule. Such a rule will later
bring conflict with configurations around other vertices, so we switch to the 2-
2-2-2 branch for solving B. By successively solving constraints at each vertex
a solution is found (see the longest branch represented in Fig. 9). Once a
first solution is found, we set the value of vmin to the value of the objective
function F for this solution. Then, we cover the rest of the tree to find a better
solution.
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Fig. 9. A portion of the research tree

3.2 Deduction of fundamental sheets to be inserted

At the end of the previous step we get a curve labeling indicating the type
of each curve. Using this labeling, we can deduce some fundamental sheets
to insert by traversing the geometric surfaces of the geometric model G =
(S,C, V ) to be meshed. Let s ∈ S be a geometric surface, then:

• if all its incident curves are labeled 1 then a single level 1 fundamental
sheet must be inserted in order to inflate all the mesh faces classified on
s. The inflating process corresponds to the an adaptation of the pillowing
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algorithm [12] where a path of mesh faces is opened to insert a complete
layer of hexahedra.

• if some incident curves are labeled 1 and some others are labeled 3, then a
single level 2 fundamental sheet must be inserted to capture this surface.
It will inflate all the mesh faces classified on s plus some inner faces.

• if some incident curves are labeled 1 and some others are labeled 2, then
a level 1 fundamental sheet must be inserted in order to inflate all the
mesh faces classified on s. It will also inflate the mesh faces classified on
the incident surfaces of s, sharing a curve labeled 2 with s.

• if some incident curves are labeled 1 or 3 and some others are labeled 2,
then it is like the previous case but with a level 2 fun sheet to insert.

• Finally along each curve labeled 2 or 3, inner sheets must be added in
order to capture geometric curves. To do that it is necessary to define a
path P of mesh faces forming a 2-manifold inside the volume. The faces of
P are then inflated to insert a level 2 or level 3 fundamental sheet. Each
2-labeled curve ends on a 3-valent vertex or is incident to a 2-labeled curve
around 4 or 5-valent vertices.

The definition of the sheets to insert is totally automatic following the previous
given rules. First, for each geometric surface s ∈ S, we build a set of mesh
faces that define the path to insert the fundamental sheet capturing s. Then,
for each geometric curve c ∈ C, we check if it is totally captured (one sheet
on both sides); if it is not, some sets of faces are also defined corresponding to
level 3 fundamental sheets. Once all the sets of mesh faces are defined, there
remains only to apply sheet insertion by inflating each set of faces.

Considering the example of Fig. 9, let us now indicate the fundamental
sheets to be inserted (see Fig. 10). The first step consists in inserting the level
1 fundamental sheets. The face [F,G,H,I] is surrounded by 1-labeled curves
thus a level 1 fundamental sheet is inserted (see Fig. 9-a). Faces [A,B,C],
[A,C,D], [B,C,G,F] and [C,G,H,D] are pairwise incident along 2-labeled curves
and are surrounded by 1-labeled curves. Hence, a single level 1 fundamen-
tal sheet is used to capture all of four (see Fig. 9-c). For the same reason,
faces [A,B,E], [A,E,D], [B,F,I,E] and [D,E,I,H] are captured by a single level
1 fundamental sheet (see Fig. 9-d).Eventually, the paths of 2-labeled curves
{[B,C],[C,D],[D,E],[E,B]} and {[G,C],[C,A],[A,E],[E,I]} require to insert level
3 fundamental sheets (see Fig. 9-d and Fig. 9-e).

4 Results and discussion

We show two examples to illustrate the proposed capability. In both cases, we
insert fundamental sheets in an initial THex mesh, i.e. a hexahedral mesh built
by splitting each tetrahedron of a tetrahedral mesh into four hexahedra. The
first example shown in Fig. 11 is a diamond-shaped geometric domain, which
has two opposite 4-valent vertices and eight 3-valent vertices. Some views of
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Fig. 10. Fundamental sheets to insert

the final mesh are given in Fig. 11-a and Fig. 11-b. In Fig. 11-c and 11-d, two
points of view are used to highlight the pairs of level 3 fundamental sheets
that go across the volume. To drive the sheet insertion inside the volume, we
use an advancing front algorithm that depends on the underlying hexahedral
mesh. The result can thus differ depending on the mesh but the success of
sharp feature detection does not rely on the base mesh. The second example
is called the hook model. Snapshots from four view angles are given in Fig. 12.
We can see that the patterns of THex meshes are no longer along curves where
the insertion of fundamental sheets allows us to get surface chords on both
sides of each geometric curve. In Fig. 13 are given the three sets of fundamental
sheets.

a b c d

Fig. 11. A diamond-shaped domain discretized with a THex mesh then improved
by inserting fundamental sheets

The different experiments we led highlighted important issues about the
robustness of our approach and the future improvements to add:
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• The resolution of the constraint system always finishes as expected and
proved (see lemma (2) );

• The definition of the set of faces to inflate depends on the base mesh and
it should be improved for inner sheets when the initial mesh is too coarse.
Inner sheets must form a 2-manifold, follow the structure of the initial
mesh and must take care of it propagating out of the geometric domain.
Moreover, some level 2 and level 3 fundamental sheets could be connected
inside the domain. It is currently not handled. From our point of view,
there is no theoretical limitation to this process but it remains technical
work to do.

• Once the set of faces is defined, the sheet insertion process always works6.

a b

c d

Fig. 12. The resulting mesh for the hook model

5 Conclusion and Future Work

In this work, we proposed an a posteriori technique based on the notion of
fundamental mesh in order to modify hexahedral meshes to get boundary-
aligned layers of hexahedra. The approach consists in two parts: solving a
constraint system defined on the topology of the CAD model to discretize;

6Note that getting a robust sheet insertion process with mesh classification (i.e.
geometry association) is technically difficult to implement.
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a b c

Fig. 13. Level 1, level 2 and level 3 fundamental sheets for the hook model respec-
tively in a, b and c

then introducing fundamental sheets inside the mesh. The first step is to-
tally automatic and always terminates. It can be easily extended to support
new configurations. Automatic rules are also given for the second step of the
algorithm and first results allow us to assess the adequacy of the approach.

However, the second step of the algorithm deals with geometric propa-
gation of surfaces and needs to be improved in the future to minimize its
sensitivity to the initial mesh discretization. Another extension of this work
will be to handle multi-domain geometries. The resolution of the constraint
system will remain unchanged as fundamental sheets should match between
adjacent domains, while the definition of the sheets to insert will have to be
done on all the domains and no longer on a single one.
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